
Π−nets: Deep Polynomial Neural Networks
Grigorios G. Chrysos1, Stylianos Moschoglou1,2, Giorgos Bouritsas1,

Yannis Panagakis3, Jiankang Deng1,2, Stefanos Zafeiriou1,2

1 Imperial College London, 2 Facesoft.io, 3 University of Athens Greece

Π−nets: Deep Polynomial Neural Networks
Grigorios G. Chrysos1, Stylianos Moschoglou1,2, Giorgos Bouritsas1,

Yannis Panagakis3, Jiankang Deng1,2, Stefanos Zafeiriou1,2

1 Imperial College London, 2 Facesoft.io, 3 University of Athens Greece

Motivation

• Impressive results have been obtained using deep convolutional neural networks
the last few years. Skip connections have been extensively used for further im-
provements of such networks.

• However, even with such powerful networks, image generation is largely not
solved. The current state-of-the-art networks [4, 2] use some special kind of
skip connections.

• Motivated by the impressive performance by such networks, we demonstrate how
such special skip connections create high-order polynomials.

• Our new class of neural networks, called Π−nets, has strong empirical results in
a battery of tasks.

Method

• Given input z, we want to approximate the function G(z).

• The classic feedforward networks, use the form: xn = ST
[n]
xn−1 + b[n] where n

indicates the nth layer for n ∈ [1, N ]. An activation function is typically applied
after the xn before the next layer.

• Instead, we want to use an alternative approximator, i.e. polynomials. We define
the recursive form:

xn =
(
AT

[n]z
)
∗
(
ST

[n]xn−1 + BT
[n]b[n]

)
(1)

• The symbol ‘∗’ refers to an elementwise product.

• Instead of using a single polynomial, we can use a product of polynomials, i.e.
the output of a polynomial (1) can be the input for the next polynomial. That
enables an exponential total order.
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Fig. 1: Two schematics of Π−nets. The one on the top expresses a single polynomial, while the one on the bottom

illustrates a product of polynomials.

Generation/classification without activation
functions

• We train polynomial generators with linear blocks, i.e. ditching the activation functions
between the layers, in a GAN setting:

Fig. 2: Linear interpolation in the latent space of a polynomial generator when trained on a) fashion images [8], b) colored

MNIST, c) facial images [3].

• Noticeably, the generator without activation functions between the layers can learn the data
distributions.

• We perform a similar experiment with a polynomial classification network, i.e. we remove
the activation functions of the network. The accuracy in CIFAR-10 and CIFAR-100 is
90.7% and 66.7% respectively.

Experiments against state-of-the-art methods

We conduct experiments against state-of-the-art methods in a) face generation, b) audio classi-
fication.

• We modify the state-of-the-art StyleGAN [4] and convert it into a product of polynomials;
the performance improves by 4.6%. Synthesized faces from our method:

• In the second experiment we use the Speech Commands dataset. The goal is to demonstrate
the increased expressivity of Π−nets. The accuracy of the compared methods (in the Table
below) is similar, but Π−net has 38% fewer parameters. The symbol ‘# par’ abbreviates
the number of parameters (in millions).

Speech Commands classification
Model # blocks # par (↓) Accuracy (↑)

ResNet34 [3, 4, 6, 3] 21.3 0.951± 0.002
Π−net [3, 3, 3, 2] 13.2 0.951± 0.002

3D mesh representation learning

We conduct an experiment on 3D deformable meshes of fixed topology. We extend
the state-of-the-art spiral convolutions [1] by converting them into a polynomial:

error (mm) (↓) speed (ms) (↓)
GAT [6] 0.732 11.04
FeastNet [7] 0.623 6.64
MoNet [5] 0.583 7.59
SpiralGNN [1] 0.635 4.27

Π−net (simple) 0.530 4.98
Π−net (simple - linear) 0.529 4.79
Π−net (full) 0.476 5.30
Π−net (full - linear) 0.474 5.14

Aside of the quantitative results, we provide qualitative visualization:

Fig. 4: Color coding of the per vertex reconstruction error on an exemplary human body mesh. From left to right:

ground truth mesh, 1st order SpiralGNN, 2nd, 3rd and 4th order Π−net.
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